Higher-Order Fourier Analysis: Applications to Algebraic Property Testing

Yuichi Yoshida

National Institute of Informatics, and Preferred Infrastructure, Inc

May 17, 2016

Decision Problems

- Function $f: \mathbb{F}_2^n \to \{0,1\}$.
- Function property \mathcal{P} . (such as linearity: $f(x) + f(y) \equiv f(x + y) \mod 2$ for all x, y.)
- Q. How long does it take to decide f satisfies \mathcal{P} ?

Decision Problems

- Function $f: \mathbb{F}_2^n \to \{0,1\}$.
- Function property \mathcal{P} . (such as linearity: $f(x) + f(y) \equiv f(x + y) \mod 2$ for all x, y.)
- Q. How long does it take to decide f satisfies \mathcal{P} ?
- A. Trivially, it takes 2^n time.

Decision Problems

- Function $f: \mathbb{F}_2^n \to \{0,1\}$.
- Function property \mathcal{P} . (such as linearity: $f(x) + f(y) \equiv f(x+y) \mod 2$ for all x, y.)
- Q. How long does it take to decide f satisfies \mathcal{P} ?
- A. Trivially, it takes 2^n time.
- Q. Can we do something in sublinear or even in constant time?

Property testing

<u>Definition</u>

$$f: \{0,1\}^n \to \{0,1\}$$
 is ϵ -far from $\mathcal P$ if,

$$d_{\mathcal{P}}(f) := \min_{g \in \mathcal{P}} \frac{\#\{x \in \{0,1\}^n \mid f(x) \neq g(x)\}}{2^n} \geq \epsilon.$$

Property testing

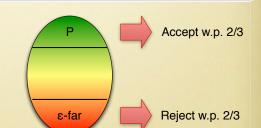
Definition

 $f:\{0,1\}^n \to \{0,1\}$ is ϵ -far from $\mathcal P$ if,

$$d_{\mathcal{P}}(f) := \min_{g \in \mathcal{P}} \frac{\#\{x \in \{0,1\}^n \mid f(x) \neq g(x)\}}{2^n} \ge \epsilon.$$

A *tester* for a property \mathcal{P} : Given

- $f: \{0,1\}^n \rightarrow \{0,1\}$ as a query access.
- proximity parameter $\epsilon > 0$.



Input: a function $f: \{0,1\}^n \to \{0,1\}$ and $\epsilon > 0$.

Goal: f(x) = 1 for every $x \in \{0, 1\}^n$?

Input: a function $f: \{0,1\}^n \to \{0,1\}$ and $\epsilon > 0$.

Goal: f(x) = 1 for every $x \in \{0, 1\}^n$?

1: **for** i = 1 to $\Theta(1/\epsilon)$ **do**

2: Sample $x \in \{0,1\}^n$ uniformly at random.

3: **if** f(x) = 0 **then** reject.

4: Accept.

Input: a function $f: \{0,1\}^n \to \{0,1\}$ and $\epsilon > 0$.

Goal: f(x) = 1 for every $x \in \{0, 1\}^n$?

- 1: **for** i = 1 to $\Theta(1/\epsilon)$ **do**
- 2: Sample $x \in \{0,1\}^n$ uniformly at random.
- 3: **if** f(x) = 0 **then** reject.
- 4: Accept.

Theorem

• If $f \equiv 1$, always accepts. (one-sided error)

Input: a function $f: \{0,1\}^n \to \{0,1\}$ and $\epsilon > 0$.

Goal: f(x) = 1 for every $x \in \{0, 1\}^n$?

- 1: **for** i = 1 to $\Theta(1/\epsilon)$ **do**
- 2: Sample $x \in \{0,1\}^n$ uniformly at random.
- 3: **if** f(x) = 0 **then** reject.
- 4: Accept.

Theorem

- If $f \equiv 1$, always accepts. (one-sided error)
- If f is ϵ -far, accepts with probability $(1 \epsilon)^{\Theta(1/\epsilon)} \leq 2/3$.

Input: a function $f: \{0,1\}^n \to \{0,1\}$ and $\epsilon > 0$.

Goal: f(x) = 1 for every $x \in \{0, 1\}^n$?

- 1: **for** i = 1 to $\Theta(1/\epsilon)$ **do**
- 2: Sample $x \in \{0,1\}^n$ uniformly at random.
- 3: **if** f(x) = 0 **then** reject.
- 4: Accept.

Theorem

- If $f \equiv 1$, always accepts. (one-sided error)
- If f is ϵ -far, accepts with probability $(1 \epsilon)^{\Theta(1/\epsilon)} \leq 2/3$.
- Query complexity is $O(1/\epsilon) \Rightarrow constant!$

Property testing was introduced by [RS96] for program checking.

Property testing was introduced by [RS96] for program checking.

Since then, various kinds of objects have been studied.

Ex.: Functions, graphs, distributions, geometric objects, images.

Property testing was introduced by [RS96] for program checking.

Since then, various kinds of objects have been studied.

Ex.: Functions, graphs, distributions, geometric objects, images.

Q. Why do we study property testing?

Property testing was introduced by [RS96] for program checking.

Since then, various kinds of objects have been studied.

Ex.: Functions, graphs, distributions, geometric objects, images.

Q. Why do we study property testing?

A. Interested in

- ultra-efficient algorithms.
- connections to inapproximability, locally testable codes, and learning.
- the relation between local view and global property.

Local testability of affine-Invariant properties

Definition

 \mathcal{P} is affine-invariant if a function $f: \mathbb{F}_2^n \to \{0,1\}$ satisfies \mathcal{P} , then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A: \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Local testability of affine-Invariant properties

Definition

 \mathcal{P} is affine-invariant if a function $f: \mathbb{F}_2^n \to \{0,1\}$ satisfies \mathcal{P} , then $f \circ A$ satisfies \mathcal{P} for any bijective affine transformation $A: \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Definition

 \mathcal{P} is *(locally) testable* if there is a tester for \mathcal{P} with $q(\epsilon)$ queries.

Local testability of affine-Invariant properties

Some specific locally testable affine-invariant properties:

- Degree-d polynomials [AKK+05, BKS+10]
- Fourier sparsity [GOS+11]
- Odd-cycle-freeness: There exist no $x_1, \ldots, x_{2k+1} \in \mathbb{F}_2^n$ such that $f(x_1) = \cdots = f(x_{2k+1}) = 1$ and $x_1 + \cdots + x_{2k+1} \equiv 0$ [BGRS12].

The goal

Q. Can we characterize locally testable affine-invariant properties? [KS08]

The goal

Q. Can we characterize locally testable affine-invariant properties? [KS08]

A. Yes.

The goal

Q. Can we characterize locally testable affine-invariant properties? [KS08]

A. Yes.

In this talk, we review how we have attacked this question.

- One-sided error testable ≈ Affine-subspace hereditary
- Testable
 ⇔ Estimable
- Two-sided error testable

 Regular-reducible

Higher order Fourier analysis has played a crucial role!

Fourier analysis

For $S \subseteq [n]$, define $\chi_S : \mathbb{F}_2^n \to \{-1,1\}$ as $\chi_S(x) = (-1)^{\sum_{i \in S} x_i}$. $\{\chi_S\}$ forms an orthonormal basis for functions: $\mathbb{F}_2^n \to \mathbb{R}$:

$$\mathbf{E}[\chi_S(x)\chi_T(x)] = \mathbf{E}[(-1)^{\sum_{i \in S \triangle T} x_i}] = \begin{cases} 1 & \text{if } S = T, \\ 0 & \text{otherwise.} \end{cases}$$

Fourier analysis

For $S \subseteq [n]$, define $\chi_S : \mathbb{F}_2^n \to \{-1,1\}$ as $\chi_S(x) = (-1)^{\sum_{i \in S} x_i}$. $\{\chi_S\}$ forms an orthonormal basis for functions: $\mathbb{F}_2^n \to \mathbb{R}$:

$$\mathbf{E}[\chi_S(x)\chi_T(x)] = \mathbf{E}[(-1)^{\sum_{i \in S \triangle T} x_i}] = \begin{cases} 1 & \text{if } S = T, \\ 0 & \text{otherwise.} \end{cases}$$

 \Rightarrow A function $f: \mathbb{F}_2^n \to \mathbb{R}$ can be uniquely decomposed as

$$f(x) = \sum_{S \subseteq [n]} \widehat{f}(S) \chi_S(x),$$

where $\widehat{f}(S) = \mathbf{E}_{\mathbf{x}}[f(x)\chi_S(x)]$ measures the correlation of f with χ_S . (Fourier coefficients)

Linearity testing

Input: a function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ and $\epsilon > 0$.

Goal: $f(x) + f(y) \equiv f(x + y) \pmod{2}$ for every $x, y \in \mathbb{F}_2^n$?

Linearity testing

Input: a function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ and $\epsilon > 0$.

Goal:
$$f(x) + f(y) \equiv f(x + y) \pmod{2}$$
 for every $x, y \in \mathbb{F}_2^n$?

- 1: **for** i = 1 to $\Theta(1/\epsilon)$ **do**
- 2: Sample $x, y \in \mathbb{F}_2^n$ uniformly at random.
- 3: **if** $f(x) + f(y) \not\equiv f(x + y) \pmod{2}$ **then** reject.
- 4: Accept.

Linearity testing

Input: a function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ and $\epsilon > 0$.

Goal: $f(x) + f(y) \equiv f(x + y) \pmod{2}$ for every $x, y \in \mathbb{F}_2^n$?

- 1: **for** i = 1 to $\Theta(1/\epsilon)$ **do**
- 2: Sample $x, y \in \mathbb{F}_2^n$ uniformly at random.
- 3: **if** $f(x) + f(y) \not\equiv f(x + y) \pmod{2}$ **then** reject.
- 4: Accept.

Theorem ([BLR93])

- If f is linear, always accepts. (one-sided error)
- If f is ϵ -far, rejects with probability at least 2/3.
- Query complexity is $O(1/\epsilon)$

Observation

For any $S \subseteq [n]$, we have

$$\epsilon \le d_{\text{LIN}}(f) = \Pr[f(x) \not\equiv \sum_{i \in S} x_i] = \Pr[(-1)^{f(x)} \not= \chi_S(x)]$$

$$= \mathbf{E}\Big[\frac{1 - (-1)^{f(x)} \chi_S(x)}{2}\Big] = \frac{1 - \widehat{g}(S)}{2} \quad (g := (-1)^f).$$

This fact can be used to analyze the rejection probability.

Observation

For any $S \subseteq [n]$, we have

$$\epsilon \le d_{\text{LIN}}(f) = \Pr[f(x) \not\equiv \sum_{i \in S} x_i] = \Pr[(-1)^{f(x)} \not= \chi_S(x)]$$

$$= \mathbf{E} \Big[\frac{1 - (-1)^{f(x)} \chi_S(x)}{2} \Big] = \frac{1 - \widehat{g}(S)}{2} \quad (g := (-1)^f).$$

This fact can be used to analyze the rejection probability.

Fourier analysis is

powerful enough to study specific properties.

Observation

For any $S \subseteq [n]$, we have

$$\epsilon \le d_{\text{LIN}}(f) = \Pr[f(x) \not\equiv \sum_{i \in S} x_i] = \Pr[(-1)^{f(x)} \not= \chi_S(x)]$$

$$= \mathbf{E}\Big[\frac{1 - (-1)^{f(x)} \chi_S(x)}{2}\Big] = \frac{1 - \widehat{g}(S)}{2} \quad (g := (-1)^f).$$

This fact can be used to analyze the rejection probability.

Fourier analysis is

- powerful enough to study specific properties.
- not powerful enough to obtain general results.

Higher order Fourier analysis

We look at correlations with polynomials instead of linear functions.

Higher order Fourier analysis

We look at correlations with polynomials instead of linear functions.

Main technical tools:

- Decomposition theorem
 - A function can be decomposed into a structured part + pseudorandom part (with respect to low-degree polynomials)
- Equidistribution theorem "generic" polynomials look independently distributed.

Higher order Fourier analysis

We look at correlations with polynomials instead of linear functions.

Main technical tools:

- Decomposition theorem
 - A function can be decomposed into a structured part + pseudorandom part (with respect to low-degree polynomials)
- Equidistribution theorem "generic" polynomials look independently distributed.

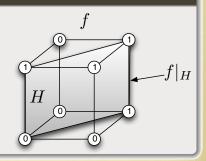
Caveat: In this talk, we do not touch most of technical foundations such as Gowers norm, rank, and bias.

Oblivious tester

Definition

An oblivious tester works as follows:

- Take a restriction $f|_{H}$.
 - H: random affine subspace of dimension $h(\epsilon)$.
- Output based only on $f|_{H}$.



Motivation: avoid "unnatural" properties such as $f \in \mathcal{P} \Leftrightarrow n$ is even. For natural properties, \exists a tester $\Rightarrow \exists$ an oblivious tester [BGS10].

Decomposition theorem

 $\mu_{f,h}$: the distribution of $f|_H$.

Observation

A tester cannot distinguish f from g if $\mu_{f,h} \approx \mu_{g,h}$.

Decomposition theorem

 $\mu_{f,h}$: the distribution of $f|_{H}$.

Observation

A tester cannot distinguish f from g if $\mu_{f,h} \approx \mu_{g,h}$.

Theorem (Decomposition theorem)

Any function can be decomposed as $f = f_1 + f_2 + f_3$ for $d = d(\epsilon, h)$:

- $f_1 = \Gamma(P_1, \dots, P_C)$ for "generic" degree-d polynomials $\{P_i\}$.
- f_2 : small L_2 norm.
- f₃: uncorrelated with degree-d polynomials.

Decomposition theorem

 $\mu_{f,h}$: the distribution of $f|_{H}$.

Observation

A tester cannot distinguish f from g if $\mu_{f,h} \approx \mu_{g,h}$.

Theorem (Decomposition theorem)

Any function can be **decomposed** as $f = f_1 + f_2 + f_3$ for $d = d(\epsilon, h)$:

- $f_1 = \Gamma(P_1, \dots, P_C)$ for "generic" degree-d polynomials $\{P_i\}$.
- f₂: small L₂ norm.
- f₃: uncorrelated with degree-d polynomials.

The *pseudorandom parts* f_2 and f_3 do not affect $\mu_{f,h}$ much.

 \Rightarrow we can focus on the *structured part* f_1 .

Any function $f: \mathbb{F}_2 \to \{-1, 1\}$ can be decomposed as:

$$f = \sum_{S \subseteq [n]: |\widehat{f}(S)| > \epsilon} \widehat{f}(S) \chi_S(x) + \sum_{S \subseteq [n]: |\widehat{f}(S)| \le \epsilon} \widehat{f}(S) \chi_S(x).$$

Any function $f: \mathbb{F}_2 \to \{-1,1\}$ can be decomposed as:

$$f = \sum_{S \subseteq [n]: |\widehat{f}(S)| > \epsilon} \widehat{f}(S) \chi_S(x) + \sum_{S \subseteq [n]: |\widehat{f}(S)| \le \epsilon} \widehat{f}(S) \chi_S(x).$$

• By Perseval's identity $\sum_{S} \widehat{f}(S)^2 = 1$

Any function $f: \mathbb{F}_2 \to \{-1,1\}$ can be decomposed as:

$$f = \sum_{S \subseteq [n]: |\widehat{f}(S)| > \epsilon} \widehat{f}(S) \chi_S(x) + \sum_{S \subseteq [n]: |\widehat{f}(S)| \le \epsilon} \widehat{f}(S) \chi_S(x).$$

• By Perseval's identity $\sum_{S} \widehat{f}(S)^2 = 1$ \Rightarrow the former depends only on $O(1/\epsilon^2)$ many linear functions.

Any function $f: \mathbb{F}_2 \to \{-1,1\}$ can be decomposed as:

$$f = \sum_{S \subseteq [n]: |\widehat{f}(S)| > \epsilon} \widehat{f}(S) \chi_S(x) + \sum_{S \subseteq [n]: |\widehat{f}(S)| \le \epsilon} \widehat{f}(S) \chi_S(x).$$

- By Perseval's identity $\sum_{S} \widehat{f}(S)^2 = 1$ \Rightarrow the former depends only on $O(1/\epsilon^2)$ many linear functions.
- The latter has negligible Fourier coefficients.

One-sided error testable \approx Affine-subspace hereditary

Affine-subspace hereditary

Definition

A property \mathcal{P} is affine-subspace hereditary if $f \in \mathcal{P} \Rightarrow f|_H \in \mathcal{P}$ for any affine subspace H.

Ex.:

- degree-d polynomials, Fourier sparsity, odd-cycle-freeness
- f = gh for some polynomials g, h of degree $\leq d 1$.
- $f = g^2$ for some polynomial g of degree < d 1.

Characterization of one-sided error testability

Conjecture ([BGS10])

 \mathcal{P} is testable with one-sided error by an oblivious tester $\Leftrightarrow \mathcal{P}$ is (essentially) affine-subspace hereditary

Characterization of one-sided error testability

Conjecture ([BGS10])

 ${\mathcal P}$ is testable with one-sided error by an oblivious tester

 $\Leftrightarrow \mathcal{P}$ is (essentially) affine-subspace hereditary

⇒ is true [BGS10].

Characterization of one-sided error testability

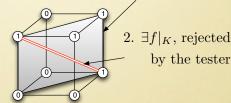
Conjecture ([BGS10])

 \mathcal{P} is testable with one-sided error by an oblivious tester $\Leftrightarrow \mathcal{P}$ is (essentially) affine-subspace hereditary

 \Rightarrow is true [BGS10].

Proof sketch:

1. Suppose $f \in \mathcal{P}$ and $f|_{H} \notin \mathcal{P}$



3. f is also rejected w.p.> 0, contradiction.

Think of affine-triangle-freeness:

No
$$x, y_1, y_2 \in \mathbb{F}_2^n$$
 s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

Think of affine-triangle-freeness:

No
$$x, y_1, y_2 \in \mathbb{F}_2^n$$
 s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

 \Leftrightarrow No $x, y_1, y_2 \in \mathbb{F}_2^n$ s.t.

$$f(L_1(x, y_1, y_2)) = \sigma_1$$
 for $L_1(x, y_1, y_2) = x + y_1$ and $\sigma_1 = 1$, $f(L_2(x, y_1, y_2)) = \sigma_2$ for $L_2(x, y_1, y_2) = x + y_2$ and $\sigma_2 = 1$, $f(L_3(x, y_1, y_2)) = \sigma_3$ for $L_3(x, y_1, y_2) = x + y_1 + y_2$ and $\sigma_3 = 1$.

Think of affine-triangle-freeness:

No
$$x, y_1, y_2 \in \mathbb{F}_2^n$$
 s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

 \Leftrightarrow No $x, y_1, y_2 \in \mathbb{F}_2^n$ s.t.

$$f(L_1(x, y_1, y_2)) = \sigma_1$$
 for $L_1(x, y_1, y_2) = x + y_1$ and $\sigma_1 = 1$,
 $f(L_2(x, y_1, y_2)) = \sigma_2$ for $L_2(x, y_1, y_2) = x + y_2$ and $\sigma_2 = 1$,
 $f(L_3(x, y_1, y_2)) = \sigma_3$ for $L_3(x, y_1, y_2) = x + y_1 + y_2$ and $\sigma_3 = 1$.

We call this $(A = (L_1, L_2, L_3), \sigma = (\sigma_1, \sigma_2, \sigma_3))$ -freeness.

Think of affine-triangle-freeness:

No
$$x, y_1, y_2 \in \mathbb{F}_2^n$$
 s.t. $f(x + y_1) = f(x + y_2) = f(x + y_1 + y_2) = 1$.

 \Leftrightarrow No $x, y_1, y_2 \in \mathbb{F}_2^n$ s.t.

$$f(L_1(x, y_1, y_2)) = \sigma_1$$
 for $L_1(x, y_1, y_2) = x + y_1$ and $\sigma_1 = 1$,
 $f(L_2(x, y_1, y_2)) = \sigma_2$ for $L_2(x, y_1, y_2) = x + y_2$ and $\sigma_2 = 1$,
 $f(L_3(x, y_1, y_2)) = \sigma_3$ for $L_3(x, y_1, y_2) = x + y_1 + y_2$ and $\sigma_3 = 1$.

We call this $(A = (L_1, L_2, L_3), \sigma = (\sigma_1, \sigma_2, \sigma_3))$ -freeness.

A is called an affine system of linear forms.
 ⇒ well studied in higher order Fourier analysis.

Testability of subspace hereditary properties

Observation

The following are equivalent:

- \mathcal{P} is affine-subspace hereditary.
- There exists a (possibly infinite) collection $\{(A^1, \sigma^1), \ldots\}$ s.t. $f \in \mathcal{P} \Leftrightarrow f$ is (A^i, σ^i) -free for each i.

Testability of subspace hereditary properties

Observation

The following are equivalent:

- \mathcal{P} is affine-subspace hereditary.
- There exists a (possibly infinite) collection $\{(A^1, \sigma^1), \ldots\}$ s.t. $f \in \mathcal{P} \Leftrightarrow f$ is (A^i, σ^i) -free for each i.

Theorem ($[BFH^+13]$)

If each (A^i, σ^i) has bounded complexity, then the property is testable with one-sided error.

Proof idea

Let's focus on the case $f = \Gamma(P_1, \dots, P_C)$ and $\mathcal{P} = \text{affine } \triangle\text{-freeness.}$

Proof idea

Let's focus on the case $f = \Gamma(P_1, \dots, P_C)$ and $\mathcal{P} = \text{affine } \triangle\text{-freeness.}$

f is ϵ -far from $\mathcal P$

 \Rightarrow There are $x^*, y_1^*, y_2^* \in \mathbb{F}_2^n$ spanning an affine triangle.

Proof idea

Let's focus on the case $f = \Gamma(P_1, \dots, P_C)$ and $\mathcal{P} = \text{affine } \triangle$ -freeness.

f is ϵ -far from \mathcal{P}

 \Rightarrow There are $x^*, y_1^*, y_2^* \in \mathbb{F}_2^n$ spanning an affine triangle.

$$\Pr_{x,y_1,y_2}[f(x+y_1) = f(x+y_2) = f(x+y_1+y_2) = 1]$$

$$\geq \Pr_{x,y_1,y_2}[P_i(L_j(x,y_1,y_2)) = P_i(L_j(x^*,y_1^*,y_2^*)) \ \forall i \in [C], j \in [3]],$$

which is non-negligibly high from the equidistribution theorem.

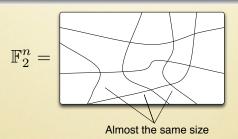
⇒ Random sampling works.

Equidistribution theorem

The space \mathbb{F}_2^n can be divided according to $\{P_i(L_j(x))\}_{i\in[C],j\in[3]}$.

Theorem (Equidistribution theorem)

If each P_i is "generic" enough, then each cell has almost the same size.



Equidistribution theorem for Fourier analysis

Let $P_1, \ldots, P_C : \mathbb{F}_2^n \to \mathbb{F}_2$ be linear functions. If $P_i(x)$ is of the form $\sum_{j \in S_i} x_j$, and $\mathbf{1}_{S_1}, \ldots, \mathbf{1}_{S_C}$ are linearly independent, then for any $\sigma_1, \ldots, \sigma_C$,

$$\Pr_{\mathbf{x}}[P_i(\mathbf{x}) = \sigma_i \ \forall i \in [C]] = \frac{\#\{\mathbf{x} \in \mathbb{F}_2^n \mid \sum_{j \in S_i} x_j = \sigma_i \ \forall i \in [C]\}\}}{2^n}$$
$$= 2^{-|C|}.$$

⇒ Equidistributed.

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Trivial direction: \mathcal{P} is estimable $\Rightarrow \mathcal{P}$ is testable.

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Trivial direction: \mathcal{P} is estimable $\Rightarrow \mathcal{P}$ is testable.

Theorem ([HL13])

 \mathcal{P} is testable $\Rightarrow \mathcal{P}$ is estimable.

Definition

 \mathcal{P} is *estimable* if we can estimate $d_{\mathcal{P}}(\cdot)$ to within δ with $q(\delta)$ queries for any $\delta > 0$.

Trivial direction: \mathcal{P} is estimable $\Rightarrow \mathcal{P}$ is testable.

Theorem ([HL13])

 \mathcal{P} is testable $\Rightarrow \mathcal{P}$ is estimable.

Algorithm:

- 1: $H \leftarrow$ a random affine subspace of a constant dimension.
- 2: **return** Output $d_{\mathcal{P}}(f|_{H})$.

Why can we hope $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H})$?

Why can we hope $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{\mathcal{H}})$?

(Oversimplified argument)

• Since \mathcal{P} is testable, $d_{\mathcal{P}}(f)$ is determined by the distribution $\mu_{f,h}$.

Why can we hope $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H})$?

(Oversimplified argument)

- Since \mathcal{P} is testable, $d_{\mathcal{P}}(f)$ is determined by the distribution $\mu_{f,h}$.
- If $f = \Gamma(P_1, \dots, P_C)$, then $\mu_{f,h}$ is determined by Γ and degrees of P_1, \dots, P_C (rather than P_i 's themselves).

Why can we hope $d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_{H})$?

(Oversimplified argument)

- Since \mathcal{P} is testable, $d_{\mathcal{P}}(f)$ is determined by the distribution $\mu_{f,h}$.
- If $f = \Gamma(P_1, \dots, P_C)$, then $\mu_{f,h}$ is determined by Γ and degrees of P_1, \dots, P_C (rather than P_i 's themselves).
- $f = \Gamma(P_1, \dots, P_C)$ and $f_H = \Gamma(P_1|_H, \dots, P_C|_H)$ share the same Γ and degrees.

```
\Rightarrow \mu_{f,h} \approx \mu_{f|_H,h}.\Rightarrow d_{\mathcal{P}}(f) \approx d_{\mathcal{P}}(f|_H).
```

Two-sided error testability ⇔ Regular-reducibility

Structured part

Recall that, for $f = \Gamma(P_1, \ldots, P_C) + f_2 + f_3$,

 $\mu_{f,h}$ is determined by Γ and degrees of P_i 's.

Let's use them as a (constant-size) sketch of f.

Regularity-instance (simplified)

Definition

A regularity-instance I is a tuple of

- a structure function $\Gamma: \mathbb{F}_2^{\mathcal{C}} \to [0,1]$,
- a complexity parameter $C \in \mathbb{N}$,
- a degree-bound parameter $d \in \mathbb{N}$,
- a degree parameter $\mathbf{d} = (d_1, \dots, d_C) \in \mathbb{N}^C$ with $d_i < d$,

Satisfying a regularity-instance

Definition

Let $I = (\gamma, \Gamma, C, d, \mathbf{d})$ be a regularity-instance. f satisfies I if it is of the form

$$f(x) = \Gamma(P_1(x), \dots, P_C(x)) + \Upsilon(x),$$

where

- P_i is a polynomial of degree d_i ,
- P_1, \ldots, P_C are "generic" enough.
- Υ is uncorrelated with degree-(d-1) polynomials.

Testing regularity-instances

Theorem ([Yos14a])

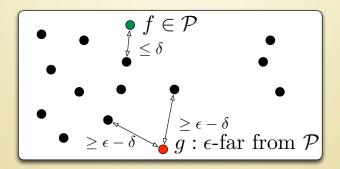
For any regularity-instance I, there is a tester for the property of satisfying I.

Algorithm:

- 1: $H \leftarrow$ a random affine subspace of a constant dimension.
- 2: **if** $f|_H$ is close to satisfying I **then** accept.
- 3: else reject.

Regular-reducibility

A property \mathcal{P} is *regular-reducible* if for any $\delta > 0$, there exists a set \mathcal{R} of constant number of regularity-instances such that:



Characterization of two-sided error testability

Theorem

An affine-invariant property \mathcal{P} is testable \updownarrow

 \mathcal{P} is regular-reducible.

Characterization of two-sided error testability

Theorem

An affine-invariant property \mathcal{P} is testable \updownarrow \mathcal{P} is regular-reducible.

Proof sketch:

- Regular-reducible ⇒ testable
 Regularity-instances are testable, and testability implies
 estimability [HL13]. Hence, we can estimate the distance to R.
- Testable \Rightarrow regular-reducible The behavior of a tester depends only on $\mu_{f,h}$. Since Γ and \mathbf{d} determines the distribution, we can find \mathcal{R} using the tester.

Notes

- We need to deal with "non-classical" polynomials instead of polynomials.
- Another characterization of testability was shown by introducing "functions limits" [Yos14b].
- Applications of the characterizations:
 - Low-degree polynomials.
 - Having a low spectral norm $\sum_{S} |\widehat{f}(S)|$.

Summary

Higher order Fourier analysis is useful for studying property testing as

- we care about the distribution $\mu_{f,h}$ for h = O(1),
- which is determined by the structured part given by the decomposition theorem.

Summary

Higher order Fourier analysis is useful for studying property testing as

- we care about the distribution $\mu_{f,h}$ for h = O(1),
- which is determined by the structured part given by the decomposition theorem.

We are almost done, qualitatively.

- one-sided error testability ≈ affine-subspace hereditary (of bounded complexity)
- two-sided error testability ⇔ regular-reducibility.

Future direction

Property Testing

- Other groups:
 - Abelian ⇒ higher order Fourier analysis exists [Sze12].
 - Non-Abelian ⇒ representation theory? [OY16]
- Why is affine invariance easier to deal with than permutation invariance?

Other applications of higher order Fourier analysis.

- Coding theory [BG16, BL15a].
- Learning theory [BHT15].
- Complexity theory [BL15b].
- Algorithms for polynomials [Bha14].