Black And White Bin Packing Revisited

Jing Chen ${ }^{1} \quad \underline{\text { Xin Han }}{ }^{2}$ Wolfgang Bein ${ }^{3}$, Hing-Fung Ting 4
${ }^{1}$ Graduate School of Informatics, Kyoto University, ${ }^{2}$ Software School, Dalian University of Technology, China,
${ }^{3}$ Department of Computer Science University of Nevada, Las
Vegas,
${ }^{4}$ Department of Computer Science, The University of Hong Kong

Outline

(1) Bin packing problem
(2) Difficulties
(3) New techniques

Bin Packing Problem

The input

....

Output: pack all the items into bins to minimize the number of bins used.

online Bin Packing Problem

Online vs Offline

- offline: before making decision, all info of n items are given.
- online: item is given one by one, and you cannot change previous decisions.

Evaluating Online Algorithms

Competitive Ratio

$$
C_{A}^{\infty}=\lim _{n \rightarrow \infty} \sup _{L}\{A(L) / \operatorname{OPT}(L) \mid O P T(L)=n\} .
$$

Online bin packing

Previous results

- Lower bounds: $1.5 \rightarrow 1.54017 \rightarrow 1.54037$, [2012TCS].
- Upper bounds: $2 \rightarrow 1.7 \rightarrow 1.69103 \rightarrow 1.666 \rightarrow 1.58889$ [J.ACM 2002].

A new model: online black white bin packing

properties

- size : (0, 1];
- colors: black, white;

Constraints

- Total size is at most 1 ;
- Two items with the same colors cannot be packed together;
- Input is online.

Target

- Min the total number of bins used.

Offline B-W bin packing

Input

- sizes: 0,0,0,0,....
- Colors: bbbbbbbbbbb...., wwwwww.....

Two kinds of offline algorithms

- Full offline: one bin is enough.
- Restricted Offline: packing has to be according to L , in contrast to the online situation, the sizes and colors are known in advance. So, n bins are used.

Evaluating Online B-W Algorithms

Competitive Ratio

$$
C_{A}^{\infty}=\lim _{n \rightarrow \infty} \sup _{L}\{A(L) / O P T(L) \mid O P T(L)=n\}
$$

where OPT stands for the restricted offline optimal algo.

Online B-W bin packing

Previous results: two colors

- Lower bounds: $1.732 \rightarrow 2$ [2015].
- Upper bounds: $3\left(1+\frac{d}{d-1}\right.$ if the larger item is $\left.\frac{1}{d}\right)$ [2012].

Previous results: $C \geq 3$ colors

- Lower bounds: 2.5 [2014].
- Upper bounds: 4 (absolute), 3.5 (Asymptotic) [2014].
- lower bound = upper bound = 1.5 if all items have size zero [2014].

Online B-W bin packing

Previous results: two colors

- FF, WF are 3-compeitive [2014].
- Pseudo is also 3-compeitive[2015].

Previous Online Algorithms

Pseduo

- Stage 1: ignore sizes, or, view sizes to zero. According colors, pack items into stacks.
- Stage 2: in each stack, call NF to items into bins.

An example

Pseduo

Figure: Worst Case of Pseudo Algorithm for items of sizes $(0,1 / 2]$

Even all the items are at most 1/2, the best knows algo, has,

An example

Pseduo

Figure: Worst Case of Pseudo Algorithm for items of sizes $(0,1 / 2]$

Even all the items are at most $1 / 2$, the best known algo has

Worst case of FF

competitve ratio at least 3

- first list L1 contains N white items with size $1-3 \epsilon$ (as $0,0, \ldots 0$, where 0 denotes white item),
- then L2 contains N pairs, where each pair have one black item with size 2ϵ (as $1,0,1,0, \ldots 1,0$, where 1 denotes black item),
- next L3 contains N pairs of one black item followed one white item where both items have size ϵ (as $1,0, \ldots, 1,0$),
- finally list L 4 contains N black items of size ϵ (as $1,1, \ldots, 1$).

Worst case of zero size, and $c \geq 3$

lower bound of optimal solution

Formally, let $s_{c, i}=1$ if the i-th item from the input sequence has color c , and $s_{c, i}=-1$ otherwise. We define

$$
L B_{2}=\max _{c \in C} \max _{i, j} \sum_{k=i}^{j} s_{c, k} .
$$

lower bound 1.5

Worst case of zero size, and $c \geq 3$

upper bound 1.5

B-W Bin packing
Difficulties
New techniques

Online Algorithm, and $c \geq 3$

upper bound

Motivation

Target

Target: to beat the upper bound 3 .

Worst case of Pesudo

high vs flat
\square

Figure: Worst Case of Pseudo Algor ithm
high vs flat

- In the high stack, each bin has volume near 0.5
- In the flat stack, each bin has volume near 0.

Start points

Key ideas

Try to merge flat stacts into high stack. How?

Worst case 1

high stack first

Figure: Worst Case of Pseudo Algorithm

Worst case 2

Flat stacks first

Figure: Worst Case of Pseudo Agorithm

High stack first

Couple pair

- Two bins
- Total size larger one
- Different top colors

Worst case 1

high stack first

Flat stacks first

Couple pair

- Two bins
- Total size larger one
- Different top colors

Worst case 2

flat stack first

Figure: Worst Case of Pseudo Agorithm $\square \square$

Future work

- Improve upper bound 3 for black-white bin packing without any constraint.
- Improve upper bound 3.5 for colored bin packing.

B-W Bin packing
 Difficulties
 New techniques

Ends

Thanks.

