Black And White Bin Packing Revisited

Jing Chen¹ Xin Han² Wolfgang Bein³, Hing-Fung Ting ⁴

¹Graduate School of Informatics, Kyoto University, ²Software School, Dalian University of Technology, China, ³ Department of Computer Science University of Nevada, Las Vegas,

⁴ Department of Computer Science, The University of Hong Kong

2 Difficulties

▲ 문 ► ▲ 문 ►

< 一 →

Bin Packing Problem

Output: pack all the items into bins to minimize the number of bins used.

(日)

online Bin Packing Problem

Online vs Offline

- offline: before making decision, all info of n items are given.
- online: item is given one by one, and you cannot change previous decisions.

Xin Han, Black And White Bin Packing Revisited

・ 同 ト ・ ヨ ト ・ ヨ ト

Evaluating Online Algorithms

Competitive Ratio

$$C_{A}^{\infty} = \lim_{n \to \infty} \sup_{L} \{A(L) / OPT(L) \mid OPT(L) = n\}.$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Online bin packing

Previous results

- Lower bounds: 1.5 \rightarrow 1.54017 \rightarrow 1.54037, [2012TCS].
- Upper bounds: 2 \rightarrow 1.7 \rightarrow 1.69103 \rightarrow 1.666 \rightarrow 1.58889 [J.ACM 2002].

Xin Han, Black And White Bin Packing Revisited

< ロ > < 同 > < 回 > < 回 > < □ > <

э

A new model: online black white bin packing

properties

- size : (0, 1];
- colors: black, white;

Constraints

- Total size is at most 1;
- Two items with the same colors cannot be packed together;
- Input is online.

Target

Min the total number of bins used.

Image: A matrix and a matrix

Offline B-W bin packing

Input

- sizes: 0,0,0,0,.....

Two kinds of offline algorithms

- Full offline: one bin is enough.
- Restricted Offline: packing has to be according to L, in contrast to the online situation, the sizes and colors are known in advance. So, *n* bins are used.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Evaluating Online B-W Algorithms

Competitive Ratio

$$C_{A}^{\infty} = \lim_{n \to \infty} \sup_{L} \{A(L) / OPT(L) \mid OPT(L) = n\},$$

where OPT stands for the restricted offline optimal algo.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Online B-W bin packing

Previous results: two colors

- Lower bounds: $1.732 \rightarrow 2$ [2015].
- Upper bounds: 3 ($1 + \frac{d}{d-1}$ if the larger item is $\frac{1}{d}$)[2012].

Previous results: $C \ge 3$ colors

- Lower bounds: 2.5 [2014].
- Upper bounds: 4 (absolute), 3.5 (Asymptotic) [2014].
- lower bound = upper bound = 1.5 if all items have size zero [2014].

< ロ > < 同 > < 回 > < 回 > .

Online B-W bin packing

Previous results: two colors

- FF, WF are 3-competitive [2014].
- Pseudo is also 3-competiive[2015].

< ロ > < 同 > < 回 > < 回 > < 回 > <

Previous Online Algorithms

Pseduo

- Stage 1: ignore sizes, or, view sizes to zero. According colors, pack items into stacks.
- Stage 2: in each stack, call NF to items into bins.

ヘロン 人間と 人間と 人間と

An example

Pseduo

Xin Han, Black And White Bin Packing Revisited

An example

Pseduo

Xin Han, Black And White Bin Packing Revisited

Worst case of FF

competitve ratio at least 3

- first list L1 contains N white items with size $1 3\epsilon$ (as 0,0,...0, where 0 denotes white item),
- then L2 contains N pairs, where each pair have one black item with size 2ε (as 1,0,1,0,...1,0, where 1 denotes black item),
- next L3 contains N pairs of one black item followed one white item where both items have size *e* (as 1,0,...,1,0),
- finally list L4 contains N black items of size ϵ (as 1,1,...,1).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □

Worst case of zero size, and $c \ge 3$

lower bound of optimal solution

Formally, let $s_{c,i} = 1$ if the *i*-th item from the input sequence has color c, and $s_{c,i} = -1$ otherwise. We define

$$LB_2 = \max_{c \in C} \max_{i,j} \sum_{k=i}^{j} s_{c,k}.$$

lower bound 1.5

(日)

Worst case of zero size, and $c \ge 3$

upper bound 1.5

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Online Algorithm, and $c \ge 3$

upper bound

Xin Han, Black And White Bin Packing Revisited

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Motivation

Target

Target: to beat the upper bound 3.

・ロト ・ 四ト ・ ヨト ・ ヨト

Worst case of Pesudo

high vs flat

high vs flat

- In the high stack, each bin has volume near 0.5
- In the flat stack, each bin has volume near 0.

Xin Han, Black And White Bin Packing Revisited

Start points

Try to merge flat stacts into high stack. How?

Xin Han, Black And White Bin Packing Revisited

< 回 > < 回 > < 回 >

э

Worst case 1

high stack first

Black And White Bin Packing Revisited

Worst case 2

Flat stacks first

Figure: Worst Case of Pseudo Algorithm

<u>Xin Han</u>,

Black And White Bin Packing Revisited

High stack first

Couple pair

- Two bins
- Total size larger one
- Different top colors

Xin Han, Black And White Bin Packing Revisited

ヘロン 人間 とくほとくほど

Difficulties New techniques

Worst case 1

high stack first

Flat stacks first

Couple pair

- Two bins
- Total size larger one
- Different top colors

Xin Han, Black And White Bin Packing Revisited

(日)

Ξ.

Worst case 2

flat stack first

Figure: Worst Case of Pseudo Algorithm

Xin Han,

Black And White Bin Packing Revisited

- Improve upper bound 3 for black-white bin packing without any constraint.
- Improve upper bound 3.5 for colored bin packing.

< ロ > < 同 > < 回 > < 回 > < □ > <

3

Thanks.

Xin Han, Black And White Bin Packing Revisited

ヘロン 人間 とくほどく ほとう

∃ 990