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Encodes economic interactions between many agents. 
n number of agents. 
Each agent i has a set of actions     to choose from. 
The utility of each agent      is a function of all agent actions. 
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The main solution concept is that of Nash equilibrium: 
A profile of strategies for each agent so that no agent can 
deviate unilaterally and increase his own payoff.  
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The main solution concept is that of Nash equilibrium: 
A profile of strategies for each agent so that no agent can 
deviate unilaterally and increase his own payoff.   
Randomization is necessary for NE to always exist (Nash ’50).
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Several aspects of Nash equilibrium as a solution concept are 
undesirable 

Non-uniqueness  

Computational hardness of computing a sample (even 
approximate) equilibrium in large games 

Learning dynamics typically do not converge to equilibria even 
in simple small games 

Nash Equilibria: The Nash 
equilibrium of solution concepts



A lot of work has been invested in reconciling these problems 
to the extent possible: 

Non-uniqueness: Axiomatic refinements of Nash equilibria by 
economists.   

Computational hardness of computing a sample (even 
approximate) equilibrium in large games: Exploring the 
tractability of computing   -approximate equilibria 
by computer scientists. 

Learning dynamics typically do not converge to equilibria even 
in simple small games: Focusing on games where dynamics 
behave well (e.g. potential) by evolutionary game theorists. 

Nash Equilibria: The Nash 
equilibrium of solution concepts

✏



Any solution concept must satisfy stationarity. Since 1920s. 
Unchallenged hypothesis across different communities.  

Why should one be skeptical of this assumption: 

Actual behavior of multi-body systems is seldom equilibrium: 

Epicycle Effects in Game Theory: When studying the 
implications of a false but deeply engrained assumption, a 
specific pattern of results emerges according to which more 
and more relaxations are necessary to accommodate the 
theory. Eventually it becomes unsustainable. 

The “unspoken” thesis



Stationary Earth Hypothesis: (a.k.a. Geocentric Theory) 
Thesis: Earth does not move. 
As computational/observational tools became more refined it 
became clear that in order to support the theory increasingly 
unrealistic explanations were needed. (e.g. Planets move along 
cycles whose centers move along cycles, e.t.c.) Number of 
epicycles needed grew from 6,8,80,… Then theory collapsed. 

Epicycles



Stationary Earth Hypothesis: (a.k.a. Geocentric Theory) 
Thesis: Earth does not move. 
As computational/observational tools became more refined it 
became clear that in order to support the theory increasingly 
complex trajectories were needed. (e.g. Planets move along 
cycles whose centers move along cycles). Number of epicycles 
needed grew from 6,8,80,… Then theory collapsed. 

Similar phenomena in game theory: 
Route 1: Inapproximability of Nash equilibria. [No efficient 
computation Daskalakis-Goldberg-Papadimitriou ’06, No FPTAS 
Chen-Deng-Teng ’06, No PTAS Rubinstein ’15] 
Route 2: Learning. Increasingly universal non-convergence 
results [Shapley’64, Books: Hofbauer-Sigmund’98, Sandholm’10] 

Epicycles



There is no equilibrium without a disequilibrium process. 

We need a new solution concept: 
  
Applicable to any game and any dynamic! 

That does not share the weaknesses of Nash equilibrium. 

Effectively a solution concept that captures all dynamical 
systems. If such a result existed, it would be a fundamental 
result of pure mathematics. 

Our thesis: A computational theory of 
games must be generative 



There is no equilibrium without a disequilibrium process. 

We need a new solution concept: 

Applicable to any game and any dynamic! 

That does not share the weaknesses of Nash equilibrium. 

Effectively a solution concept that captures all dynamical 
systems. If such a result existed, it would be a fundamental 
result of pure mathematics.=> 

Conley ’78  Fundamental theorem of dynamical systems. 

Our thesis: A computational theory of 
games must be generative 



Define (in the context of dynamical systems) and motivate (in     
the context of game theory) the following notions: 

Lyapunov function:  

Invariant function: 

Chain equivalence/recurrence: 

Fundamental Theorem of Dynamical Systems: 

Crash Course in Dynamical Systems



Let (X,d) be a compact metric space X with metric d.  
(e.g [0,1]^2, Euclidean distance) 
   
Let T+ denote either Z+ = {0,1,2,...} or R+ = [0,    ).  
A dynamical system on X is a continuous map  
that satisfies the following two properties: 
(i) 
(ii) 

Typically, we study systems of  
ODEs of the form: 

which under smoothness assumptions 
on f admit a unique solution/flow. 

Dynamical System

1
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A (strict) Lyapunov function of                  is a scalar function L(x)  

which is (strictly) decreasing on non-equilibrium solutions. 

Under strict Lyapunov fns, for each non-equilibrium solution x(t)              
L(x(t))<L(x(0)) for all t>0. I.e., whenever f(x(t)) 

The ω-limit set of an orbit with initial condition x is defined as:  

y ∈ ω(x) ↔ for some sequence tn →    , x(tk) → y.  
Every ω(x) is a nonempty, compact, connected set consisting 
entirely of equilibria and upon which the Lyapunov function is 
constant. 

Lyapunov/potential function
dx

dt

= f(x)

d

dt

L(x(t)) = rL(x(t)) · dx
dt

= rL(x(t)) · f(x(t)) < 0

6= 0

1



A first integral/invariant of                   is a scalar function I(x)  

which is constant on solutions.  

In other words, for each solution x(t) to the differential equation, 
I(x(t)) = I(x(0)) for all t. I.e., 

Every solution to the dynamical system is constrained to move 
along a single level set {I(u) = c} of the first integral, namely the 
level set that contains the initial data.  

(e.g., energy conservation in ideal pendulum) 

First integral/Invariant function
dx

dt

= f(x)

0 =
d

dt

I(x(t)) = rI(x(t)) · dx
dt

= rI(x(t)) · f(x(t))



Periodicity for computer scientists  

Suppose Alice wants to check that point x0 is a periodic point of 
function g:X->X, however she can only check the accuracy of her 
computations up to accuracy ε>0. 

Every time she computes another iteration  xi+1 =g(xi), Bob can 
corrupt her computation by a small amount |xi+1 -g(xi)|<ε. 

If Bob can always convince Alice that x0 is periodic, no matter    
how small the allowable error is, then we say that x0 is chain 
recurrent. 

Chain recurrence

x0 x1 x2
g(x0) g(x1) g(x2)

xn=x0
g(xn-1)

…



All equilibria of a dynamical system are chain recurrent. 

All periodic points of a dynamical system are chain recurrent.  

In fact, equilibria(f)    periodic points(f)    chain recurrent(f) 

However, the set of chain recurrent points can be strictly larger 
than the set of periodic points. 

E.g. Take a system defined by a point mass that traverses a circle 
of radius 1. On each discrete time step, the point mass takes  
makes  a clockwise turn of 1 radians. 

No configuration is periodic but all are chain recurrent.  

Chain recurrence (examples)

⇢ ⇢

t=0 
t=1 

t=2 
t=3 t=4 

t=5 
t=6 



We know that in: 

In gradient(-like) dynamical systems 

There exists a strict Lyapunov function L such that  

if x is not an equilibrium then 

L(x(t)) will strictly decrease. 

Conley (1976): Chain recurrence captures all limit behavior. 

In continuous dynamical systems  

There exists a function L such that  

if x is not an chain recurrence point then 

L(x(t)) will strictly decrease. 

Fundamental theorem of dyn. systems



Define (in the context of dynamical systems) and motivate (in     
the context of game theory) the following notions: 

Lyapunov function: decrease along trajectories 

Invariant function: remain constant along trajectories 

Chain equivalence/recurrence: lie on closed orbits modulo 
infinitesimal corrections. 

Fundamental Theorem of Dynamical Systems: Chain recurrence 
captures all limit behavior. 

Recap



 Agent behavior is deterministic learning dynamic: 
 Input: Current mixed strategy of other agents     
 Output: Chosen (randomized) action 

Game + learning dynamic -> dynamical system. 

Even if we do not converge to equilibrium always, we can try to 
understand how the structure of the chain recurrence sets 
affects system performance. 
  

Dynamical Systems in Games



The answer depends on the dynamic. 

How do chain recurrent sets (CRS) look for the most well 
studied combinations of games and dynamics. 

Game class 1: Potential/Coordination games 

Game “class” 2: 2x2 zero-sum games 

These are easy instances. Hence, CRS=Equilibria, right? 

How do CRS look like?



The answer depends on the dynamic. 

How do chain recurrent sets (CRS) look for the most well 
studied combinations of games and dynamics. 

Game class 1: Potential/Coordination games: YES 

Game “class” 2: 2x2 zero-sum games: NO, maximally different 

These are easy instances. Hence, CRS=Equilibria, right? 

How do CRS look like?
[Papadimitriou-P. ITCS ’16]



  

Basic tool in mathematical theory of selection and evolution. 
Survival of the fittest: The probability of an action increases 
iff it outperforms the current (mixed) strategy.  

Replicator Dynamics
[Taylor-Jonker ’78,Schuster-Sigmund ’83]

rate of growth of action i
utility of action i at state x expected utility at state x

We will assume that each agent updates their initial mixed 
strategy according to the replicator dynamics. 
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In potential games, for replicator  
dynamics (as well as many other dyn.) 
there exists a function L that strictly 
increases/decreases implying  
convergence to NE.  

Does this imply that CRS=NE? Not automatically. 

Why? (Counterexample by Conley). 
One has to make sure that this small deviations cannot add up 
in unpredictable ways. (Sard’s thm, smoothness, e.t.c.) 

Sanity check 1: Coordination games
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Sanity check 1: Coordination games



1,-1 -1,1
-1,1 1,-1 

   A
       A

    B

       B

In ZS with fully mixed NE (e.g.  
Matching Pennies game), the set of 
CRS is the whole state space. 

What does this mean? In the presence of infinitesimal small and 
infrequent noise absolutely no prediction can be made about the 
actual state of the system. (Effective chaos: Google vs. Microsoft, 
or Google vs. Facebook) 

Equilibria: Trivial to compute, unique, do not capture behavior. 

Sanity check 2: 2X2 ZS games!



Invariants via Information Theory
Kullback–Leibler divergence is a non-symmetric measure of the 
difference between two probability distributions p and q. The K–
L divergence of q from p, denoted DKL(p||q) is a measure of the 
information lost when q is used to approximate p.  

K-L divergence is a pseudometric: 
Non-negative (DKL(p||q) =0 iff p=q) 

Well-defined (i.e., finite) if p,q have the same support. 

In the case of zero-sum games with fully mixed NE we have that: 

Similar conditions hold for arbitrary large networks. 

+ [Hofbauer ’98] 



Given a differentiable real dynamical system defined on an open subset 
of the plane, then every non-empty compact ω-limit set of an orbit, 
which contains only finitely many fixed points, is either 
 • a fixed point,    
 • a periodic orbit, or    
 • a connected set composed of a finite number of fixed points    

together with homoclinic and heteroclinic orbits connecting these. 

Poincaré–Bendixson theorem (1901)
Two dimensional systems with real timeset cannot be chaotic.

https://en.wikipedia.org/wiki/Differentiable_real_dynamical_system
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Non-empty
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/%CE%A9-limit_set
https://en.wikipedia.org/wiki/Orbit_(dynamics)
https://en.wikipedia.org/wiki/Critical_point_(mathematics)
https://en.wikipedia.org/wiki/Periodic_orbit
https://en.wikipedia.org/wiki/Connected_set
https://en.wikipedia.org/wiki/Homoclinic_orbit
https://en.wikipedia.org/wiki/Heteroclinic_orbit
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In ZS with fully mixed NE (e.g.  
Matching Pennies game), the set of 
CRS is the whole state space. 

The existence of the specific invariants  

can be shown to exclude all other possibilities allowed by the 
Poincaré–Bendixson theorem expect for periodicity. Specifically, 
every initial condition lies on a cycle where its distance from its 
center in terms of KL-divergence remains constant. 

Analysis: 2X2 ZS games

+



A lot of work has been invested in reconciling these problems 
to the extent possible: 

Non-uniqueness: Axiomatic refinements of Nash equilibria 
(e.g. risk dominant, payoff dominant eq, ESS, SSS, proper, 
trembling hand, perfect, e.t.c.)   

Computational hardness of computing a sample (even 
approximate) equilibrium in large games: Exploring the 
tractability of computing   -approximate equilibria. 

Learning dynamics typically do not converge to equilibria even 
in simple small games: Focusing on games where dynamics 
behave well (e.g. potential, zero-sum games) 

Nash Equilibria: The Nash 
equilibrium of solution concepts

✏



A lot of work has been invested in reconciling these problems 
to the extent possible: 

Non-uniqueness: Still a problem for CRS.   

Computational hardness of computing a sample (even 
approximate) CRS in k-person games: Trivially in P for 
replicator dynamics. 

Learning dynamics typically do converge to CRS even in all 
games: By definition. 

Chain Recurrent Sets > Nash eq. 
But which CRS?
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Multiple Nash/Chain Recurrent Points: Which one to choose? 
``No other task may be more significant within game theory. '’        
Ariel Rubinstein  

         Worst Case Analysis (a.k.a. Price of Anarchy) 

Revisiting Coordination Games

Social Welfare (OPT)
Social Welfare (worst equilibrium)

PoA  = ≥  1



How will the system behave? 
It depends on the initial conditions. 

Prediction in Dynamical Systems
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How will the system behave? 
It depends on the initial conditions. 
This specific dynamical system has  
two good properties: 

A) Every trajectory converges to a 
fixed point.  

B) We can predict long term  
behavior given any initial condition if we test a simple oracle 
(e.g. is the initial condition above/below the blue curve). 

Average case analysis: Given an initial distribution over initial 
conditions (typically uniform), output the resulting distribution 
over equilibria (proportional to its region of attraction).  

Prediction in Dynamical Systems
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How well does the system behave on average? 

   A, A

   B, B

   B, A

   A, B

Bad pure Nash

Good pure Nash

Unstable mixed Nash

Convergence to  
equilibria follows 
from standard 
Lyapunov args.
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How well does the system behave on average? 
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How well does the system behave on average? 
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How well does the system behave on average? 
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Average Case Performance

   Theorem:    [Panageas-P., EC’16]  
1.In the case of 2x2 coordination games with w=2, the size 

of the region of attraction of the optimal equilibrium 
(B,B) is equal to                               . 

2.For w≥1, the size of attraction of the optimal equilibrium 
is at least w/(w+1) and at most 1-2/(w+1)2. 

3.For w≥1, the average system performance, i.e. where the 
quality of each equilibrium is weighted by the size of its 
basin of attraction, is at least 1.653*w. (close to the 
optimal = 2w, much better than the worst pure Nash = 2)



Invariants via Information Theory
Kullback–Leibler divergence is a non-symmetric measure of the 
difference between two probability distributions p and q. The K–
L divergence of q from p, denoted DKL(p||q) is a measure of the 
information lost when q is used to approximate p.  

K-L divergence is a pseudometric: 
Non-negative (DKL(p||q) =0 iff p=q) 

Well-defined (i.e., finite) if p,q have the same support. 

In the case of coordination games with fully mixed NE we have 
that: (analogous but more complex relations hold for ) 

Similar conditions hold for arbitrary large networks. 

[Hofbauer ’98] 



Computing stable/unstable manifolds
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The KL-divergence invariant 
for the stable/unstable manifold 
must be equivalent to: 

xw(1-x)=yw(1-y) where x,y the 
probabilities that the first, second 
agent assign to action A. 

Indeed, the unstable manifold 
y=x satisfies this equation. 

For fixed values of w, e.g. w=2, we can explicitly solve this 
equation. 
The solution for w=2 is                                            . 
We can integrate this function to compute the exact size of the 
region of attraction for the good eq. (B,B) and hence for (A,A) 
as well.



Approximating the basin of attraction of pure eq.
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The KL-divergence invariant 
for the stable/unstable manifold 
must be equivalent to: 

xw(1-x)=yw(1-y) where x,y the 
probabilities that the first, second 
agent assign to action A. 

The parametric uncertainty in        
the exponent does not allow  
for a general closed solution.

Instead, we produce approximate coverings of the regions of 
attraction using unions of parametric polytopes. This allows 
us to compute upper and lower bounds on the size of each 
basin.



Extensions to more agents

(1,1) (0,0)

(0,0) (2,2)

(1,1) (0,0)

(0,0) (2,2)

Bad pure Nash

Good pure Nash

Continuum of  
Unstable mixed Nash



More agents->more invariants

Suppose that we can find two invariants functions I1,I2 then  
given an unstable equilibrium x0 all points of y on its stable 
manifold satisfy both: 
I1(y)=I1(x0)   Yellow set  &  I2(y)= I2(x0)  Purple set  
Their intersection identifies the stable manifold.



   

Open Questions
Chain recurrent sets is the most recent mathematical theory of 
studying many-body interactions and it is totally unexplored. 

1. The ``combinatorial’’ structure of CRS 
2. Average Price of Anarchy beyond Potential Games 
3. Understanding the mixing properties inside a CRS-component 
4. Computational complexity considerations. 
5. … 

market 1920s theory, 
Equilibria

Does not scale, 
unless bad approx.

1980s  
model, CRS



Thank you


